Contact us

Search result for:

Three-axis Hall Magnetometer Publications

1.07.2021 | Hall, MRI, THM1176

Research and Development using the THM1176

The three-axis Hall Magnetometer THM1176 finds many applications across the world, to map the five gauss line around an MRI, to map magnetic fields around a magnet or inside a magnet. It also serves as a reference for other magnetometers. At Metrolab, we are proud to enable these achievements.

Here is a non-exhaustive list of recent publications supported by the THM1176:

Cooley, C.Z., McDaniel, P.C., Stockmann, J.P. et al. A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5, 229–239 (2021).

Y. P. Klein, L. Abelmann and J. G. E. Gardeniers, “Influence of the Distribution of the Properties of Permanent Magnets on the Field Homogeneity of Magnet Assemblies for Mobile NMR,” in IEEE Transactions on Magnetics, vol. 57, no. 7, pp. 1-7, July 2021,

Rigla, J.P., Borreguero, J., Gramage, C., et al. A Fast 0.5 T Prepolarizer Module for Preclinical Magnetic Resonance Imaging. arXiv preprint arXiv:2103.04738, (2021).

Rathebe, P., Weyers, C. & Raphela, F. Exposure levels of radiofrequency magnetic fields and static magnetic fields in 1.5 and 3.0 T MRI units. SN Appl. Sci. 3, 157 (2021).

H. Fan, J. Wang, Q. Feng, Q. Hu, S. Zuo, V. Nabaei and H. Heidari, Detection techniques of biological and chemical Hall sensors.  RSC Adv., (2021), 11, 7257

Cooley, C. Z., McDaniel, P. C., Stockmann, J. P., Srinivas, S. A., Cauley, S., Sliwiak, M., Sappo, C. R., Vaughn, C. F., Guerin, B. and Rosen, M. S. (2020) ‘A Portable Brain MRI Scanner for Underserved Settings and Point-Of-Care Imaging‘, arXiv preprint arXiv:2004.13183.

Gantz, S., Hietschold, V. and Hoffmann, A. L. (2020) ‘Characterization of magnetic interference and image artefacts during simultaneous in-beam MR imaging and proton pencil beam scanning‘, Physics in Medicine & Biology. Supported by both the THM1176-LF and the MFC3045!

Gantz, S., Riemann, L., Smeets, J., Pawelke, J. and Hoffmann, A. (2019) ‘PO-1021 Influence of beamline and scanning magnets on the magnetic fringe field at a proton PBS nozzle‘, Radiotherapy and Oncology, 133, pp. S565-S566.

Gao, Y. (2020) High repetition rate laser driven proton source and a new method of enhancing acceleration. lmu.

Gilbert, C. and Collaboration, P. ‘Deployment of magnetometers to monitor stray magnetic fields near the PROSPECT detector‘. AIP Conference Proceedings: AIP Publishing LLC, 070007.

Hansson, B., Höglund, P., Markenroth Bloch, K., Nilsson, M., Olsrud, J., Wilén, J. and Björkman‐Burtscher, I. M. (2019) ‘Short‐term effects experienced during examinations in an actively shielded 7 T MR‘, Bioelectromagnetics, 40(4), pp. 234-249.

Hartwig, V., Biagini, C., De Marchi, D., Flori, A., Gabellieri, C., Virgili, G., Ferrante Vero, L. F., Landini, L., Vanello, N. and Giovannetti, G. (2019) ‘The procedure for quantitative characterization and analysis of magnetic fields in magnetic resonance sites for protection of workers: a pilot study‘, Annals of work exposures and health, 63(3), pp. 328-336.

Hartwig, V., Biagini, C., De Marchi, D., Flori, A., Gabellieri, C., Virgili, G., Ferrante Vero, L. F., Landini, L., Vanello, N. and Giovannetti, G. (2020) ‘Analysis, comparison and representation of occupational exposure to a static magnetic field in a 3-T MRI site‘, International Journal of Occupational Safety and Ergonomics, pp. 1-10.

Lee, W., Nam, J., Kim, J., Jung, E., Kim, N. and Jang, G. (2020) ‘Steering, Tunneling, and Stent Delivery of a Multifunctional Magnetic Catheter Robot to Treat Occlusive Vascular Disease‘, IEEE Transactions on Industrial Electronics.

Maniotis, N., Makridis, A., Myrovali, E., Theopoulos, A., Samaras, T. and Angelakeris, M. (2019) ‘Magneto-mechanical action of multimodal field configurations on magnetic nanoparticle environments‘, Journal of Magnetism and Magnetic Materials, 470, pp. 6-11.

McDaniel, P. C., Cooley, C. Z., Stockmann, J. P. and Wald, L. L. (2019) ‘The MR Cap: A single‐sided MRI system designed for potential point‐of‐care limited field‐of‐view brain imaging‘, Magnetic resonance in medicine, 82(5), pp. 1946-1960.

Nagornyi, A., Petrenko, V. I., Rajnak, M., Gapon, I. V., Avdeev, M. V., Dolnik, B., Bulavin, L. A., Kopcansky, P. and Timko, M. (2019) ‘Particle assembling induced by non-homogeneous magnetic field at transformer oil-based ferrofluid/silicon crystal interface by neutron reflectometry‘, Applied Surface Science, 473, pp. 912-917.

Nelson, I., Ogden, T. A., Al Khateeb, S., Graser, J., Sparks, T. D., Abbott, J. J. and Naleway, S. E. (2019) ‘Freeze‐Casting of Surface‐Magnetized Iron (II, III) Oxide Particles in a Uniform Static Magnetic Field Generated by a Helmholtz Coil‘, Advanced Engineering Materials, 21(3), pp. 1801092.

Nevzorov, A., Orlov, A., Ignatjev, V. and Bardin, A. (2019) ‘Calibration algorithm of Hall magnetometer in visible coordinate system‘, Measurement, 134, pp. 939-946.

Price, R. (2020) ‘Clinical MRI Physics: State of Practice‘, Clinical Medical Imaging Physics: Current and Emerging Practice, pp. 317.

Rathebe, P. C. ‘Occupational exposure to RF energy and SMFs in MRI units within Mangaung metropolitan region: a study protocol‘. 2019 Open Innovations (OI): IEEE, 222-225.

Vennemann, B., Obrist, D. and Rösgen, T. (2020) ‘A smartphone-enabled wireless and batteryless implantable blood flow sensor for remote monitoring of prosthetic heart valve function‘, Plos one, 15(1), pp. e0227372.

Zuo, S., Schmalz, J., Ozden, M.-O., Gerken, M., Su, J., Niekiel, F., Lofink, F., Nazarpour, K. and Heidari, H. (2020) ‘Ultrasensitive Magnetoelectric Sensing System for pico-Tesla MagnetoMyoGraphy‘, IEEE Transactions on Biomedical Circuits and Systems.

Fatahi, M., Karpowicz, J., Gryz, K. et al. Evaluation of exposure to (ultra) high static magnetic fields during activities around human MRI scanners. Magn Reson Mater Phy 30, 255–264 (2017).

Share This