Building Your Magnetic Field Mapper with LEGO®

Philip Keller Magnetics 2018

Hall field mappers: (from Magnetics 2007 presentation)

- Need:
 - 3-Axis Hall sensor or array
 - Positioning jig
 - Temperature control
 - Calibration

• Get:

- 3 components of **B**
- Point-sampled
- Low to medium
 precision

Hall field mappers today: Turn-key solutions

(www.senis.ch)

Magcam Combi Scanner

Oldest turn-key field mapping system: Metrolab NMR Magnetic Field Camera

1992

Another example: Metrolab Hall Magnetic Camera (Magnetics 2017 presentation)

Sensor disc – Metrolab

Field mapper – FZ Jülich

Barriers to entry

- Cost (~ 50 100 k\$)
- Up-front choices: (c.f. Magnetics 2007)
 - Use: R&D, production, field service?
 - Measurement: field components, total field, integral, gradient?
 - Field: strength, uniformity, AC/DC, stability?

- Precision: 10% or 10 ppm?
- Environment: vacuum, cryogenic?
- Positioning: access, range, precision, reproducibility?
- Speed: cost, external error sources, human error?

Goal: reduce barriers to entry

- Iterative design:
 - Start small
 - Explore
 - Test
 - Validate
 - Demonstrate
 - Grow
- Low cost of entry

Concept: modular field mapper

- Magnetic field measurement: network of small, independent, flexible, low-cost sensor modules
- Mechanical positioning: easily reconfigurable, expandable, little mechanical expertise

Realization: MV2Lego[™]

Bricks

(standard 2x4 studs top/bottom, 3 lateral holes for Technics axles)

"Super-Hub"

(synchronization, non-magnetic connectors)

MV2Lego™: Demo

MV2Lego™ Software in Action

Sensor 3 - Serial Nr. 00014 Sensor 4 - Serial Nr. 00016		Disconnect
		Disconnect
Refresh List	Connect All	Disconnect All
ensor Info		
Sensor 00017		
Inactive	(Lego)	(Degrees)
	X 0.00 🗘	phi 0.00 🗘
Reset Position	Y 0.00 🗘	theta 0.00 🗘
Unit Lego 🔹	Z 0.00 ‡	psi 0.00 🗘
Acquisition		
Resolution / Sampling Rate:	16 bits - 375 Hz	•
Range:	100 mT	•
Zoom factor x30		
Display PCB		
Large Measurement Range ((10)	
Time Series Cincle Chat	Live View	
single shot	Live view	
Measurement Duration: 1	20 seconds	Statu

Why LEGO?

- Modularity
- Variety of elements (including Technic and Mindstorms)
- Availability
- Familiarity
- Cost
- Mechanical precision

https://www.cailliau.org/Alphabetical/L/Lego/Dimensions/General%20Considerations/

My personal favorite: World-champion Rubik's Cube Solver

https://www.youtube.com/watch?v=staapsj3eRQ

Why not wireless?

- Complexity, size, cost: antenna, comm. chip, battery, charging system, firmware, more powerful µprocessor, …
- RF interference (e.g. MRI scanners)
- Ferromagnetic material in components

MV2Lego™: key figures

Magnetometry:

- Calibrated
- Measurement ranges: 0.1, 0.3, 1, 3, 10, 30 T
- Resolution: 14, 15, 16, 16+ bits
- Sample rate: ≤ 3 kHz
- Active volume: 200x200x10 µm
- Triggered acquisition

- Modularity:
 - Magnetometry:
 - Up to 12 modules
 - Synchronized trigger
 - Mechanical:
 - Equivalent to 3 2x4 bricks
 - 3 Technic axle holes
- Size:
 - 32 x 16 x 29 mm
- Cost:
 - ??? ~ 5 k\$ per unit
- Schedule:
 - ??? End of 2018

Early results: mapping of remote magnetic navigation system

J. Pascal, F. Yeung - FHNW-HLS-IMA

Early results: mapping of remote magnetic navigation system

J. Pascal, F. Yeung - FHNW-HLS-IMA

Early results: Same sensors reconfigured to measure MRI gradients

J. Pascal, N. Weber, J. Felblinger, J. Oster, "Magnetic gradient mapping of a 3T MRI scanner using a modular array of novel three-axis Hall sensors" (paper submitted to ISMRM 2018)

Conclusions

- Flexible, expandable magnetic field mapping system
- DC as well as AC fields
- Not a universal solution: constraints of mechanics, magnetometers
- Can be used with non-LEGO positioning systems
- Low cost of entry
- Cost of maximal system similar to existing mapping systems

